CONSISTENT EVALUATION PROTOCOL (CEP)

CPUC Energy Storage Workshop July 28, 2015

CEP Overview

- The CEP is used to report solicitation results to the Commission in a standardized format.
- Utility-specific evaluations are re-run for shortlisted offers:
 - Using same costs and operating characteristics from offers;
 - Replacing market prices with standardized, public data; and
 - Ignoring non-quantifiable adjustments like project viability and project diversity, and utility-specific adjustments like location.
- The CEP includes descriptive, quantitative, and qualitative information on offers.

CEP Contents

- Descriptive information comes directly from the offers.
- Quantitative information includes a calculation of net market value based on public inputs.
- Qualitative information includes an indication of the primary and secondary end uses for each offer.

CEP Publicly Available Data Inputs

 The standardized, publicly available data—to be used in rerunning the utility-specific net market value calculations—will come from the most recent avoided cost calculator used in a Commission proceeding*.

The public inputs include:

Forecast hourly energy prices Discount rate

Forecast capacity prices System loss factors

Forecast ancillary services value Forecast GHG costs

Forecast monthly gas prices

Public data will be refreshed Fall 2016 for 2nd RFO

* The most recent such avoided cost calculator is "DERAvoidedCostModel_v3.9_2011 v4d.xlsm" and is available on E3's website at http://www.ethree.com/public_projects/cpuc5.php

CEP Descriptive Information

 Descriptive information comes directly from the offer and includes the following items.

Utility (PG&E/SCE/SDG&E)Name of Project	Commercial Operation DateTerm (Years)	Self-Discharge (MW/hour)Ramp Rate (MW/hour)
Interconnection Voltage (kV)Interconnection Level (T/D)	Maximum Capacity (MW)Minimum Capacity (MW)	AGC (Yes/No)Regulation at Zero (Yes/No)
Local Capacity AreaZone (NP/ZP/SP)	Qualifying RA Capacity (MW)Duration (Hours)	Contract Cost (\$)Variable O&M (\$/MWh)
Status (New/Existing)Product (Dispatchable/RA)	Efficiency (%)Max Daily Switches (#/day)	Fixed O&M (\$/kW-year)
Storage Technology	Max Cycles per Lifetime (#)	

CEP Quantitative Information

 The Net Market Value calculation—benefits minus costs—is done with utility-specific models using publicly available prices. The market benefits and costs are as follows.

Market Benefits	Market Costs	
Capacity/Resource Adequacy ValueEnergy Value	 Fixed Capacity Payments and Fixed O&M Cost* Charging Costs and Variable O&M Cost 	
Ancillary Services ValueDistribution Investment Deferral Value	Network Upgrade CostGHG Compliance Cost (if applicable to project)	
	Debt Equivalency CostMarket Participation Cost	

^{*}Includes developers' costs such as permitting, construction, decommissioning, etc.

GHG Impacts Captured in NMV

Energy prices include GHG cost

- Effectively adder to gas cost
 - 2015 actual \$12/t ~ \$0.75/MMBtu
 - 2020 forecast \$40/t ~ \$2.10/MMBtu
- Higher \$/MWh GHG cost on-peak because less efficient plants
- GHG impacts incorporated when modeling energy cycling
- If storage project is "making money" doing energy shifting, it is also reducing GHGs.

Ancillary Services prices also incorporate GHG cost

Based on opportunity cost of not generating

CEP Qualitative Information

Qualitative information consists of an indication of which end uses might exist for an offer:

→ "2" = primary function; "1" = secondary function; and "0" = function not present

1. Ancillary services: frequency regulation	8. Intermittent resource integration: wind (ramp / voltage support)	15. Distribution peak capacity support (upgrade deferral)
2. Ancillary services: spin / non-spin / replacement reserves	9. Intermittent resource integration: photovoltaic (time shift, voltage sag, rapid demand support)	16. Distribution operation (voltage / value at risk (VAR) support)
3. Ancillary services: ramp	10. Supply firming	17. Outage mitigation: micro-grid
4. Black start	11. Peak shaving	18. Time-of-use (TOU) energy cost management
5. Real-time energy balancing	12. Transmission peak capacity support (upgrade deferral)	19. Power quality
6. Energy price arbitrage	13. Transmission operation (short duration performance, inertia, system reliability)	20. Back-up power
7. Resource adequacy	14. Transmission congestion relief	